![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
§2.2 求导法则与导数公式
2.2.1 函数的和、差、积、商的求导法则
定理1 设函数u=u(x)及v=v(x)在点x处可导,C为常数,则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077001.jpg?sign=1739436363-SB7PKk0mL2thQDaAfmkjdRVTt5znEJen-0-020fe281027c8fc296c57999e794c7be)
下面只证明(2),其余留给读者作为练习.
证 由于可导必连续,有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077002.jpg?sign=1739436363-C7lfRh3Q4KNnLnglsKVth5CnN1T2hzd9-0-7bad9dd93e1d779f83bacfc05a245cc5)
例1 求函数y=tanx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077003.jpg?sign=1739436363-6Xl5dtwLq157diUW0xPXMPrah4pDPaZM-0-ea7f34f128d4b49517fc79cd156e0713)
即 (tanx)′=sec2x.
类似可得
(cotx)′=-csc2x.
例2 求函数y=secx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077004.jpg?sign=1739436363-k2e8Yas8wJsTFTusqwZsXIrRbo0owZI3-0-a5fd436ec529ec7d940d8984f9ee7a28)
即 (secx)′=secxtanx.
类似可得
(cscx)′=-cscxcotx.
例3 设y=3x3+5x2-4x+1,求y′.
解 y′=3(x3)′+5(x2)′-4(x)′+1′=9x2+10x-4.
例4 设,求
解 f′(x)=3x2-3(excosx)′=3x2-3(excosx-exsinx)
=3x2-3ex(cosx-sinx).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078001.jpg?sign=1739436363-6GPMZ1ogG1OovnWvy0DJ3Nt3QitHpJuY-0-861b3ae21dd49d0f5df2ba7c87c4e345)
例5 设f(x)=x2lnx,求f′(x).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078002.jpg?sign=1739436363-23iShgatT1n2p3xum6bikbghTw9e0wiN-0-634dc5720b441f8e73e2500b15d40e25)