新能源汽车电磁兼容性设计理论与方法
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.2.2 DC-DC变换器系统EMC问题

与传统内燃机车辆不同,电动汽车车载低压电源12V或24V由高低压DC-DC变换器提供。高低压DC-DC变换器作为电动汽车的关键零部件,把动力电池几百伏的高压直流电变换成低压直流电给车载低压蓄电池充电,同时给车载低压电气部件供电。高低压DC-DC变换器通常采用功率半导体器件(如IGBT、MOSFET等)实现脉冲宽度调制(PWM)控制,对输出低电压进行调节。功率半导体器件的快速通断产生较高的电流变化率di/dt和电压变化率du/dt,形成电磁干扰源,通过高低压DC-DC变换器内部元件和外部高低压线束的寄生参数传播,形成耦合路径,产生传导电磁干扰和辐射电磁干扰。不仅对车内外无线电接收设备产生干扰,也会通过传导耦合路径影响车载高压和低压部件正常工作,如电机控制器(DC-AC逆变器)、电池管理系统(BMS)、整车控制器(VCU)等,甚至影响整车安全性。

特别是,高低压DC-DC变换器产生的传导电磁干扰,不仅会引起自身设备的辐射发射超标,甚至致使整车辐射发射不能满足整车EMC标准限值要求。因此,高低压DC-DC传导电磁干扰的产生机理、预测和抑制方法对于电动车辆的电磁兼容性非常重要。为了最终确保电动车辆整车电磁兼容性,并使整车辐射发射满足标准要求,国际标准CISPR 25和中国标准GB/T 18655—2018对电动车辆高低压零部件在150kHz~108MHz频段的传导发射和150kHz~2.5GHz频段的辐射发射规定了限值要求和测量方法。通过大量测试结果可以发现,没有进行EMC设计的产品几乎不能满足标准限值等级3的要求。图1-2所示为高低压DC-DC变换器工作时测试的低压电源线的传导发射,可以看出传导骚扰电压不能满足等级1的要求。DC-DC变换器的电磁辐射会使整车辐射发射不能满足标准限值要求,如图1-3所示。

图1-2 DC-DC变换器传导发射

图1-3 DC-DC变换器对整车辐射发射的影响

尽管工业应用的开关电源也采用了DC-DC变换器,许多学者只针对PCB板级的DC-DC变换芯片开展了电磁干扰分析和滤波器设计研究。然而,开关电源DC-DC变换器的拓扑结构、电压类型和等级、负载特性与电动车辆高低压DC-DC变换器不同,而且采用的EMC标准也不同。因此,当前开关电源EMI产生机理和抑制方法不适用于电动车辆高低压DC-DC变换器。

在电动汽车领域,大部分电磁干扰研究也都是针对低压电源PCB上的低压DC-DC变换电路进行的。这些文献基于双端口网络理论,分析了PCB寄生参数、开关技术和拓扑优化布局对DC-DC变换电路的电磁干扰产生的影响,但研究电动车辆的高低压DC-DC变换器的电磁干扰机理和抑制方法的较少。

目前,高低压DC-DC变换器EMC的主要研究内容集中在传导电磁干扰形成机理及其抑制方法。电动汽车高低压DC-DC电磁干扰的研究通常采用建模仿真和实验测量方法。顾龙等人针对电动汽车输入电压120~160V小功率车载隔离型全桥式DC-DC变换器干扰源和干扰耦合路径进行了研究,但没有充分考虑系统高频寄生参数对干扰耦合路径的影响;马羚媛和安宗裕等人考虑了开关器件、线缆、变压器等寄生参数的影响,建立了混合动力电动汽车小功率高低压DC-DC变换系统传导电磁干扰预测模型,对干扰耦合路径进行了定性分析。前期研究大多数都基于端口网络理论和黑箱理论,将变换器输入或者输出端口等效为电磁干扰源,分析干扰源与电磁噪声的关系,但没有分析内部电路寄生参数的影响。通常把理想梯形波信号等效为简化干扰源,没有考虑MOSFET等开关器件的寄生参数和动态特性的影响,不能反映真实干扰源信号特性。尽管一些学者研究了寄生参数如MOSFET引线电感和变压器的分布电容对共模干扰的影响,但没有对系统传导EMI进行解析分析。当前,DC-DC变换器传导电磁干扰高频等效电路没有充分考虑寄生参数的影响,不能预先确定引起干扰的关键元件和耦合路径,因此无法在产品设计初期指导DC-DC变换器内部电路EMC设计。

当前,电动汽车DC-DC变换器的传导EMI抑制通常采用工业经典滤波器设计方法,最高EMI抑制频率低于30MHz,缺乏电动汽车高压系统150kHz~108MHz滤波器设计理论和方法。当传导发射试验出现超标点时,通常在DC-DC变换器高压输入端口加装EMI滤波器,需要经过多次测试来优化滤波器拓扑结构才能满足要求。这种加装滤波器的方法只能在产品设计后期采用,费用高、周期长,不易于工程化实现。此外,对于EMI滤波器插入损耗的验证,通常采用离线测量法,没有将EMI滤波器加入实际DC-DC变换器系统进行带载运行,以验证滤波模块的实际有效插入损耗。

本书重点描述:考虑功率半导体寄生参数的零电压开关(ZVS)DC-DC变换器的高频等效电路建模方法,预测传导电磁干扰;利用建立的高频等效电路模型,建立关键频率点的共模干扰和差模干扰的传递函数,预测高压电源线传导电磁干扰和辐射电磁干扰,并确定影响电磁干扰形成的主要元件参数。一种有效的高压端口宽频段传导干扰抑制方法,降低150kHz~108MHz频段的电磁发射,以满足标准限值要求;一种基于谐振点传导发射抑制的PCB板级滤波电路设计方法,可以在控制器内部实现,体积小、成本低、高效,在产品不同研发阶段都可以实现。