![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/866/31728866/b_31728866.jpg)
习题二
A组
1.指出下列函数是怎样复合而成的:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00059005.jpg?sign=1739572556-yV5H5S2RImYSPrKta8kTNsk9JQz7OMlp-0-396566cb3ae5bb31da2d845dea4a391f)
2.什么是分段函数?分段函数是几个函数?分段函数是初等函数么?
3.选择题:
(1)已知数列0,1,0,1,…,则_____
A.收敛于0 B.收敛于1 C.发散 D.以上结论都不对
(2)下面数列中收敛的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00060001.jpg?sign=1739572556-kCy2ZbitxaLJjbMBkItvqF0wErXTvL82-0-007f0c9a3cb4599cc7809688b2c767bb)
(3)下面数列中发散的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00060002.jpg?sign=1739572556-71hMGXHy7WWqWX7CFW4uZtzxPtyW6e6v-0-3c258d68c2cec7171b41bd4b2036d298)
(4)收敛数列一定_____
A.有界 B.无界
C.可以有界也可以无界 D.以上都不对
(5)x→x0时,函数极限存在的充要条件是_____
A.左极限存在 B.右极限存在
C.左、右极限都存在 D.左、右极限都存在且相等
(6)当x→0时,是_____
A.无穷小量 B.无穷大量 C.有界变量 D.无界变量
(7)当x→∞时,是_____
A.无穷大量 B.无穷小量 C.有界变量 D.没有意义的量
(8)两个无穷大量之差是_____
A.0 B.无穷大量 C.常数 D.不一定
(9)如果xn是无穷小量,yn是无穷大量,那么一定是_____
A.无穷小量 B.无穷大量 C.常数 D.以上结论都不对
(10)当x→x0时,函数f(x)有极限是f(x)在x0点处连续的_____
A.充分条件 B.必要条件 C.充要条件 D.以上都不对
(11)下列条件:
①函数f(x)在x0点有定义;②存在;③
.①②③是函数在点x0处连续的_____
A.充分条件 B.必要条件 C.充要条件 D.以上都不对
4.证明不存在.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00060009.jpg?sign=1739572556-v2xmBaoY7bSskfuhc9DGSUDVT97Qer4I-0-badcced5047eb356dc0dae171c5cf516)
分别讨论x→0及x→1时,f(x)的极限是否存在
6.求极限:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061001.jpg?sign=1739572556-7Wgh6LX8coFCX42IU6vhv0OKvOvsSt94-0-69c04a61ff8449aae04433042af47c32)
7.当x→1时,无穷小x-1与(1)x2-1,(2)是否同阶?是否等价?
8.求证:当x→0时,.
9.已知,试确定b的值.
10.设=2,试求a,b的值.
11.求函数的间断点,并指出其类型.如果是可去间断点,则补充定义,使它连续.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061006.jpg?sign=1739572556-r1RphwU3TaCI3mWzuyXNmPVFYhJxNQgB-0-27cd5506f092c679f3c4d72d77c8c589)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061007.jpg?sign=1739572556-llDvEzVv79ddsjKVMB437PMLC9TjSPAf-0-cd1446cc89ab161b3de518abd6060e03)
试确定a的值,使存在.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061009.jpg?sign=1739572556-n8LPXyQbUmK0A2vAI2d76RXnmZOowN6m-0-d2035039bd37144ee9bc772f920f8051)
问:k为何值时f(x)在(-∞,+∞)内连续?为什么?
B组
1.下列函数是怎样复合而成的?
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062001.jpg?sign=1739572556-oUtdDT8ZcZsU8cnZkkvvYwfdO4YN4Ay9-0-76ea9809ddaac18aac785ac548f44baf)
2.选择题.
(1)数列xn与yn的极限分别为a与b,且a≠b,那么数列x1,y1,x2,y2,x3,y3,…的极限为_____
A.a B.b C.a+b D.不存在
(2)=_____
A.-1 B.1 C.∞ D.不存在
(3)下列极限存在的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062003.jpg?sign=1739572556-ZC9kG6FNWyghACigF2pwYMZhPS5WFLT2-0-12e044c00b2dd50d09a171e1569c69e9)
(4)当x→0时,无穷小量α=x2与的关系是_____
A.β与α是等价无穷小量 B.β与α是同阶非等价无穷小量
C.β是比α较高阶的无穷小量 D.β是比α较低阶的无穷小量
(5)已知当x→0时,f(x)是无穷大量,下列变量当x→0时一定是无穷小量的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062005.jpg?sign=1739572556-WsiVGrJiauy51empQkOSL3FzFSh94WLj-0-f061ed88ef33159ac653ec6420ecf1a1)
(6)当x→∞时,若,则a,b,c的值为_____
A.a=0,b=1,c=1 B.a=0,b=1,c为任意常数
C.a=0,b,c为任意常数 D.a,b,c均为任意常数
(7)下面结论正确的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062007.jpg?sign=1739572556-S9fXurOdFKAR7c0jyAqOOKIjBUaX8dkf-0-85603e9a5037acc51ee72c6e105b4f4a)
(8)函数在点x=1处_____
A.连续 B.不连续,但有右连续
C.不连续,但有左连续 D.左、右都不连续
(9)函数的间断点有
A.1个 B.2个 C.3个 D.4个
(10)下列函数在点x=0处均不连续,但x=0是f(x)的可去间断点的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062010.jpg?sign=1739572556-7ZPGxyvoUo6sYBqFGYK1A6nfwqjSB0tH-0-1fd27ffa7ac80e1f74a54d6308465c4e)
3.求极限:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063001.jpg?sign=1739572556-NHFX6c6MX0O8QiTZuvbKzMABIdqIj2xx-0-220e46c1e162f994e8d19c939f3932a0)
4.已知,试确定b的值.
5.已知极限存在,试确定a的值,并求出此极限值.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063004.jpg?sign=1739572556-qzUUuQ7bbdvIOqo5Z81bVm7z6taX9PUS-0-95bc6ec7f035e8172ca50a9deea9e715)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063005.jpg?sign=1739572556-uMGBZKIxSOSnqjNt5T0vLPi3uxQA3PAn-0-3e7e40992ef7b72daeb0d11dc6a34f43)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063006.jpg?sign=1739572556-miz2wrl0O4pqlcncHFrH8d7vItuyCmcQ-0-d248478db6f03dfaa8fe4ad5cca5b1cf)
9.试证:当x→0时下列函数均为无穷小量,并与x进行比较.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063007.jpg?sign=1739572556-bYAklUw5JNSA6QuoU0R0FdEZk0OxqhKZ-0-c2910d9a94905fed5501e06afc2dc422)
10.利用等价无穷小求下列极限:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063008.jpg?sign=1739572556-8iD9GERVGZV7HPhRRnh0matRS9Ze72A9-0-c80f9a080a80c87555b0185b67895394)
11.问a为何值时在(-∞,+∞)上是连续函数.
12.在x=0处连续,问a何b应满足何种关系.
13.讨论函数在分段点处的连续性,或确定a的值使函数f(x)在分段点处连续:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063011.jpg?sign=1739572556-xzi7oFiYEZmhQxAns7Xu476jgqHw6mBj-0-6186210b746078806fc355fe6fd0e823)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00064001.jpg?sign=1739572556-HebDQrKngr1UAVuPbBPGJPCpffjgVa8w-0-f47f23fbc548408edc3767b473c89e47)
14.求函数的间断点,并指出其类型:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00064002.jpg?sign=1739572556-blOsVUqQ6u8sEZFYmuUTm0GSaaAGJ9vg-0-4df997fac56ffc15b5b367650f2b85e3)
15.讨论函数的连续性,并判断间断点的类型.
16.设函数f(x)=ex-x-2,证明:在区间(0,2)内方程f(x)=0有一个实根.
17.证明:函数方程x-ksinx=1当0<k<1时,仅有一个实根,且位于区间(1,2)内.