1.2.1 为什么要使用Apache Kylin
自2006年Hadoop诞生以来,大数据的存储和批处理问题得到了妥善解决,而如何高速地分析数据也就成为下一个挑战。于是各种“SQL-on-Hadoop”技术应运而生,其中以Hive为代表,Impala、Presto、Phoenix、Drill、Spark SQL等紧随其后,它们的主要技术是“大规模并行处理”(Massively Parallel Processing,MPP)和“列式存储”(Columnar Storage)。
大规模并行处理可以调动多台机器进行并行计算,用线性增加资源来换取计算时间的线性下降。列式存储则将记录按列存放,不仅在访问时可以只读取需要的列,更可以利用存储设备擅长连续读取的特点,大大提高读取的速率。这两项关键技术使得Hadoop上的SQL查询速度从小时级提高到了分钟级。
然而分钟级别的查询响应仍然与交互式分析的现实需求相差很远。分析师敲入查询指令,按下回车键后,需要去倒杯咖啡,静静地等待结果。得到结果后才能根据情况调整查询,再做下一轮分析。如此反复,一个具体的场景分析常常需要几个小时甚至几天才能完成,数据分析效率低下。
这是因为大规模并行处理和列式存储虽然提高了计算和存储的速度,但并没有改变查询问题本身的时间复杂度,也没有改变查询时间与数据量呈线性增长的关系这一事实。假设查询1亿条记录耗时1分钟,那么查询10亿条记录就需要10分钟,查询100亿条就至少需要1小时40分钟。
当然,有很多的优化技术可以缩短查询的时间,比如更快的存储、更高效的压缩算法等,但总体来说,查询性能与数据量呈线性相关这一事实无法改变。虽然大规模并行处理允许十倍或者百倍地扩张计算集群,以期保持分钟级别的查询速度,但购买和部署十倍、百倍的计算集群又很难做到,更何况还需要高昂的硬件运维成本。
另外,对于分析师来说,完备的、经过验证的数据模型比分析性能更加重要,直接访问纷繁复杂的原始数据并进行相关分析其实并不是很美好的体验,特别是在超大规模数据集上,分析师们把更多的精力花费在了等待查询结果上,而不是用在更加重要的建立领域模型上。