![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
定理2 如果函数x=f(y)在区间Iy内单调、可导且f′(y)≠0,则它的反函数y=f-1(x)在区间Ix={x|x=f(y),y∈Iy}内也可导,且
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078003.jpg?sign=1739605512-bUZiUqcTCI9gpCi3hrq0oCtoN0AZnw3c-0-dd563db1003e9c319591bc3a981a44d8)
证 由于x=f(y)在区间Iy内单调,故其反函数y=f-1(x)在区间Ix存在、单调且连续,因此,对于任何x∈Ix,当Δx≠0时,
Δy=f-1(x+Δx)-f-1(x)≠0,
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078004.jpg?sign=1739605512-uC5DBO9JqupeyciSciy97DbN0NWhwvwx-0-ef8e8d2f63fe17c6104f672bb03503e1)
由于x=f(y)与y=f-1(x)的连续性,即Δx→0时,Δy→0,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078005.jpg?sign=1739605512-tzwdfkKSJ1YUEf72ZhOidwtc3KTWJkQA-0-fe3d1751e7d73dcc79686a82e5dd2b6e)
例7 求y=arcsinx的导数.
解 设x=siny,,其反函数为y=arcsinx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078007.jpg?sign=1739605512-feEbXIrXqno4KaxZ4ux4xIKEiAXk2b5r-0-66e882678c108ee88aeb9f5afea489a5)
又由于,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078009.jpg?sign=1739605512-b2jNEPwWNAlLoARX750ZpT0fC8UEh38V-0-3d9eb86fcfd76e98d4a9006f9ea2e236)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079001.jpg?sign=1739605512-jzCWW84Qc5fXyCScWjqHjCTzEySRtF66-0-41ea88c733e1c9354bd11092a5a63b52)
例8 求y=arctanx的导数.
解 设x=tany,,其反函数为y=arctanx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079003.jpg?sign=1739605512-fPsQLTYVQhjfglvdiVgUf09A3bQQclLC-0-c3f9770cd1f3383dded5b0fad9d2967f)
又由于sec2y=1+tan2y=1+x2,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079004.jpg?sign=1739605512-C9Xt10SRZYAADEnxhOSyl5YBN1wzlOUX-0-fc6e7e125252119edd185bbaa1c5312b)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079005.jpg?sign=1739605512-ISOH1bRdHYjERQP44xwXQ8tE4ZJp4wNQ-0-85e232b09c82c4d6a5314711f0cb59ad)
例9 求y=logax的导数.
解 x=ay与y=logax互为反函数,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079006.jpg?sign=1739605512-CukIpP8R4YwR3Y3vGx049yga4b5h8uSh-0-4780384af72c5285a30726a48dc9e23c)