![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
习题1
1.求下列函数的定义域:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00062002.jpg?sign=1739608193-NPkurYnha2gWQigdBmuD9wdieaOJmWlo-0-81a474d6dc6ff0b203d27e65a35f6f84)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063001.jpg?sign=1739608193-o6votXDUm9AkZrLRIcKOeXvxFN0pyiPb-0-8cf6ccde5a45c17d00ed7c8d5d74c9f3)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063002.jpg?sign=1739608193-wFZd2VPnHEKmbEApRnPk0Tl0oD8Gl2Ap-0-df96180c41a13e0e789161c65f536587)
2.判断下列每对函数是否是相同的函数,并说明原因.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063003.jpg?sign=1739608193-QkpgmvbYMJuTK4DhDpd7a10b5Eq1fMJM-0-a111ce87ae267c52697da4b9c2dbbb57)
(3)y=2lgx与y=lgx2; (4)y=sin2x+cos2x与y=1;
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063004.jpg?sign=1739608193-SWA1RLhboplBpgO7viPhOrZEZGVdXEfV-0-898aea32331ca070ae25f8af15eef2f0)
3.指出下列函数的复合过程:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063005.jpg?sign=1739608193-kPsIxRA6VO2VExjLK6ziHXgBQNJbDyLk-0-231ea1717a827b3bbf634531fd87e9ed)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063006.jpg?sign=1739608193-rtCLlHlOuU7ATOyuEVflHvMBxcVYxvrh-0-e10bcaef777ad46acf6a1c74b3690d09)
(5)y=xsinxlnx; (6)y=lnsin2x.
4.判断下列数列的敛散性,若收敛,求其极限.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063009.jpg?sign=1739608193-S6GTT985ASm5pKlIBawh5Siw4upGbVTs-0-05959c8a611e3c8ba59247cfcc1f1b7a)
5.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063007.jpg?sign=1739608193-94OxIifi8SrYURPa8K6bCQTVSd0hFvNq-0-7aa99c74c980a8bafafa4f18c3579e85)
6.已知,求常数a,b.
7.设
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064001.jpg?sign=1739608193-YKhoXVPzRDRpE4qVzKrj8CEAKnD1ixRd-0-1c0727368218dfd2a109dcba159cc499)
求:(1) ;
(2)f(g(x)),.
8.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064004.jpg?sign=1739608193-HyawKlMF1ux9CdLaETECFKNdKssJ6tcs-0-96af1ef3fcd4c64a5e2218daca7df203)
9.设a1=10,,试证数列{an}极限存在,并求此极限.
10.证明
11.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064007.jpg?sign=1739608193-wd5w62XWyuX880uIQMWFc2Q4rG3OI4L2-0-4d0a5cf410e0eb8e09b28974a200b14d)
讨论函数f(x)在点x=0处极限是否存在.
12.证明无穷小的等价关系具有下列性质:
(1)α~α(自反性);
(2)若α~β,则β~α(对称性);
(3)若α~β,β~γ,则α~γ(传递性).
13.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064008.jpg?sign=1739608193-oYhERZHNtHA0WHWpZsKfOpEgCu6bz8tW-0-cfe51fecea2c45c173f347e2ccb92b79)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065001.jpg?sign=1739608193-mDOt5NIxa7Nxn3N9SHkzqAzDRRt7jmSG-0-bfb3e27f72ebc2f32c80d372996760cf)
14.当x→0时,(tanx-sinx)与xk是同阶无穷小,求k值.
15.求函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065002.jpg?sign=1739608193-gGV7zeOqx6UktFRERbltLRGjvHhO4l0k-0-8fcb7e78038c23b9725777b310913ec8)
在分段点处的极限.
16.求
17.确定常数a,b,使.
18.已知为有限数l,求常数a,l.
19.已知
20.设.
21.已知,求常数a.
22.求下列函数的间断点,并判断其类型:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065009.jpg?sign=1739608193-CpNB9K8i1GtctE8kxOzxELIIWb8H7maP-0-6d822d3de3fee793ad0856a094a040fc)
23.设函数,求函数f(x)的间断点,并指出类型.
24.讨论函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066002.jpg?sign=1739608193-shCPiOvh2fQyeNxdnAG04H2NfnWxemx5-0-27c24815377e3ebb0d90b0081e92e5d0)
在点x=0处的连续性.
25.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066003.jpg?sign=1739608193-AtxDwORjDx9Hg5W77YaltMSxOxgEWOn8-0-f5ce11d30f39707b173fd9646c370b96)
确定常数a,b,使得f(x)在点x=0处连续.
26.(1)设,证明
,并问其逆是否成立?
(2)设f(x)在点x0连续,证明|f(x)|在点x0连续,并问其逆是否成立?
27.求函数,并确定常数a,b使函数f(x)在点x=-1,与x=1处连续.
28.证明方程x·2x=1至少有一个小于1的正根.
29.设函数f(x)在[a,b]上连续,且f(a)>a,f(b)<b,试证在(a,b)内至少存在一点ξ,使得f(ξ)=ξ.
30.设函数f(x)在[a,b]上连续,且a<c<d<b,证明:
(1)存在一个ξ∈(a,b),使得f(c)+f(d)=2f(ξ);
(2)存在一个ξ∈(a,b),使得mf(c)+nf(d)=(m+n)f(ξ).
31.求证:方程ex+e-x=4+cosx在(-∞,+∞)内恰有两个根.