![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
1.6.2 两个重要极限
1.
证 首先注意到,函数一切x≠0都有意义,并且当x改变符号时,函数值的符号不变,即
是一个偶函数,所以只需对x从右侧趋于零时来论证,即只需证明
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042001.jpg?sign=1739606320-eYTu35dz8cPrxUvNPKVhYZTRjutDjbtF-0-0dc4abd08a0e1ed5c63ab5105ef8bf80)
作单位圆,设圆心角∠BOC=x,过点B的切线与OC的延长线相交于D,又CA⊥OB,由图1-15知
sinx=AC,x=,tanx=BD.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042004.jpg?sign=1739606320-AZUsY6B5MndtVQJC1sWh2Ruh3TLqpRo9-0-2b7bc7fd694213913306b03a3474e5fb)
图1-15
而
△OBC的面积<扇形BOC的面积<△OBD的面积,
故
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042005.jpg?sign=1739606320-3BRfqTYsCY4Fspz3MddAbRnUW1UsN1hh-0-75fc54274af924b67486734afd5873ec)
即
sinx<x<tanx.
不等号各边都除以sinx(sinx>0),得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042006.jpg?sign=1739606320-qeZ1TE3M7WllrhlTzJle0pYQCbm3q1JA-0-6fee840f1cb01c21357f7b2c2d371f61)
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042007.jpg?sign=1739606320-SpLK3kb7d3OJyKFeLJ2OPT5s9SFAlHX9-0-e334ce5e51dd2d2a4d7ea12f89bdede4)
这里利用 .
由 ,根据夹逼准则2可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042010.jpg?sign=1739606320-UO28vqf0DbYvq1953gDq24G60M5220rA-0-8c6c883332278c77e4af9f47560b2e24)
综上所述, .
例3 求
解 .
例4 求.
解 令u=3x,则当x→0时,u→0,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043001.jpg?sign=1739606320-17IKaygD0YZIIqpGoBZE39JGNBk15gy3-0-5e40815aa929be947a8aa4e39f26442a)
注 如果正弦、正切符号后面的变量与分母的变量相同,且都趋于零,则有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043002.jpg?sign=1739606320-G7j6MIHCuUFxQNAXcTFU6CzvtC6mufoj-0-5392477b1604154496da0a3ebab8f57a)
例5 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043004.jpg?sign=1739606320-FuqOcWzZxThwayAwdGk4wvergAJxjfKm-0-f12fc8de7544a3d73fab123e7ef2b17a)
例6 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043006.jpg?sign=1739606320-jScjeBkVwLiGgjGVePDJ5l5J2Ja8RDKL-0-406305e26da7c38f7eeb6e70049c5db7)
例7 求.
解 令u=arcsinx,则x=sinu,当x→0时,u→0,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043008.jpg?sign=1739606320-PcLjnyzBEJeS2riv9badUMdVSMuOvpja-0-b0760245ffae60ce96985459555f7c6c)
2.
证 第一步:考虑x取正整数n,即x趋于+∞的情形来证明.
设,证明{an}是单调递增并且有界的数列.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043011.jpg?sign=1739606320-fBdXSAYBWnUpgZsDwhGE8X1pmT45fTVy-0-40d9588f40a2869e3d578ba1782f11f9)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044001.jpg?sign=1739606320-AkyOPgVdRjQnxeXzyDxR0P86acDpubpZ-0-b1b6d3418eaefde1b58a42b98f622478)
由an表达式可知,
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044002.jpg?sign=1739606320-vfKCB88CbBrP9tec8nQwRTDR3nEv7ZBH-0-6947fc9ed6fbfd0b88f8c31f1253b7cb)
比较an与an+1的展开式,可以看到除前两项外,an的每一项都小于an+1的对应项,并且an+1还多了最后一个非零项,因此an<an+1,即{an}是单调递增数列.
又因为都小于1,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044004.jpg?sign=1739606320-7zbbv3lwwbSl6KwRnkC8XZVF7CA6JmSx-0-7bfdca4743030cf19c410b00ef4eafe2)
即数列{an}是单调递增有界数列,根据极限存在准则2,数列{an}的极限存在,将此极限记为e,即 .
第二步:首先考虑当x→+∞时的情形,即证明
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044006.jpg?sign=1739606320-pxN4Fk5T3fuXKTV0280ti4tz5Mfbe2nT-0-7c2fcda33f35b310ac3fc655b34b2cc6)
设{xn}是趋于+∞的任一单调递增正实数数列,则必存在正整数数列{bn},使得
bn≤xn<bn+1.
由此可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044007.jpg?sign=1739606320-kt2hIn5MXDoqTk6EjS716k3sFKlfgknR-0-4fea5561a75875290d755601ff320db3)
又因为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045001.jpg?sign=1739606320-oj0r7BziLHxYtVjK6h1SUpm6NQ6KZwqe-0-b198154178a7ee1da8a29ba038c8c700)
由夹逼准则知
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045002.jpg?sign=1739606320-edAv4RGk9cJRNZ7Q2poheUSdfwjZxQ62-0-939b13016f8a3bf891a0b8520cadfe0c)
由实数列{xn}的任意性知
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045003.jpg?sign=1739606320-7NoZQHFEmRCp12rKoLHnSAtwpe1tamAt-0-30fd10e8ac426ffe875e9d382e821a1f)
对于x→-∞时的情形,采用类似x→+∞时的推导过程,只需令xn=-yn即可,这里不再赘述.
综上所述 .
注 这个极限也可换成另一种形式.
令,当x→∞时,u→0,于是有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045006.jpg?sign=1739606320-iby0Uxq17JI5WNi0aNClD9O1dfZ3aFK0-0-4da41491ca8a213d6b9d57e544ad3100)
例8 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045008.jpg?sign=1739606320-lSsi3PisbZSKgk53nNRvC0WdS5aNg51I-0-c75d81b34cf3ec78e2052251eac9d7df)
例9 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045010.jpg?sign=1739606320-lQe8vFnvO6kiF6gWT71OrPoXuHEnPwsa-0-338b166eb0ea8a6df9fc649c6f8a9183)
例10 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046002.jpg?sign=1739606320-2oSUqux4C1jDPRYikdujmrvgNjU6zssV-0-2cecc96534d53e2208d2a7b8fdd7a631)
则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046003.jpg?sign=1739606320-6PHYLrDf4FjWdRfbmWABoZ53LTA8TqdQ-0-57a63f3255e280ef71135c53fa00b8af)
例11 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046005.jpg?sign=1739606320-5EP6KVMZeXLodo4igjSBfbxd8C4NNtOc-0-f241979c00eab33283a0f7f467709aad)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046006.jpg?sign=1739606320-upStz3aJXJceSxseso2P1j2u4mw4d51a-0-9caa8305146039056b8282773b7d14de)
例12 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046008.jpg?sign=1739606320-EGxTU3lJGvqQ9jm0KD9YyE02AvWN2KJ5-0-2cab5de4de49c785a9b2f41002e9a894)
例13 求.
解 令u=ex-1,即x=ln(1+u),则当x→0时,u→0,于是
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047002.jpg?sign=1739606320-Xer7f701luJ0RQo3u7LdKHU2qzdpAAIP-0-c24a206861bdd7050ccdd3031a0287dd)
利用例10的结果,可知上述极限为1,即
例14 求.
解 而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047006.jpg?sign=1739606320-dYNu2hYpRamn9YUMVNLWSD7Hh54HG7yW-0-ee714c243306f7ca3ec1fe7f771754f3)
由幂指函数极限的求法,得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047007.jpg?sign=1739606320-eA1vN71QJZCSG5VjLOjf1xEDlKwqR6nc-0-146ad4244344d87438c13905373bd4bd)