会员
机器学习(第2版)
赵卫东 董亮编著更新时间:2025-01-16 17:44:31
最新章节:习题开会员,本书免费读 >
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容全、案例丰富,每章都提供Python程序代码和习题,供读者巩固所学知识。
品牌:人邮图书
上架时间:2022-11-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
机器学习(第2版)最新章节
查看全部- 习题
- 13.4.2 演员-评论家算法
- 13.4.1 DQN算法
- 13.4 深度强化学习
- 13.3.4 Q-Learning算法
- 13.3.3 SARSA算法
- 13.3.2 时序差分算法
- 13.3.1 蒙特卡洛强化学习
- 13.3 强化学习基本算法
- 13.2.4 价值函数
赵卫东 董亮编著
主页
最新上架
- 会员
GPT图解:大模型是怎样构建的
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字 - 会员
AI辅助编程实战
本书深入探讨了AI(人工智能)如何革新软件开发领域,从AI辅助编程的演变、优势与挑战到具体的工具与技术实现,为开发者打开了一个全新的世界。全书共10章,第1章介绍了编程的历史演变和生成式AI的崛起;第2章深入技术细节,解释了AI辅助编程工具的主要功能和工作原理;第3章讨论了提示工程的重要性,以及如何与AI工具进行有效沟通;第4章和第5章通过GitHubCopilot和其他AI编程工具的案例,展示计算机11万字 - 会员
一本书读懂大模型:技术创新、商业应用与产业变革
这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策计算机13.2万字 - 会员
ChatGPT漫谈
本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模计算机10.8万字 - 会员
解构ChatGPT
ChatGPT的诞生与迭代,昭示着AIGC领域向前迈出了重要一步,以更为拟人的人工智能提高了人机对话效率和自然程度,可能彻底改变人类与计算机的交互方式。因此,大众对于ChatGPT类产品的认识和学习将对自身成长与社会进步大有裨益。为帮助读者快速了解ChatGPT,本书避免使用过多的专业术语和复杂的数学推导过程,而是采用生动的示例和精致的图表,重点围绕ChatGPT的技术变迁、应用变革与挑战变局,图计算机14.4万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
破解深度学习(核心篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基计算机13.4万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字