
会员
数据分析师宝典
黄羿更新时间:2020-07-28 11:26:41
最新章节:内容简介开会员,本书免费读 >
随着移动通信和互联网应用的发展,物联网、云计算、大数据等新兴技术与应用不断涌现。这是一个用数据说话的时代,也是一个依靠数据竞争的时代。目前世界500强企业中,有90%以上都建立了数据分析部门。IBM、微软、Google等知名公司都积极投资数据业务,建立数据部门,培养数据分析团队。各国政府和越来越多的企业意识到数据和信息已经成为企业的智力资产和资源,数据的分析和处理能力正在成为日益倚重的技术手段。本书抛开深奥的理论条文,采用了大量的图表与案例,深入浅出,将枯燥生硬的理论知识用诙谐幽默、通俗易懂的语言娓娓道来。本书除对必备的理论知识进行介绍外,还注重实务操作,旨在帮助数据分析人员快速掌握数据分析的核心知识,实现数据分析能力的大幅度提高。
上架时间:2020-07-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
数据分析师宝典最新章节
查看全部- 内容简介
- 反侵权盗版声明
- 12.3 实例:光电科技有限公司的仓储管理
- 12.2 仓储绩效评价指标
- 12.1 仓储管理指标
- 第12章 怎么做好仓储数据指标的分析
- 11.4 零售营销评估指标
- 11.3 客户相关指标
- 11.2 企业经营状况指标
- 11.1 宏观市场指标
黄羿
主页
最新上架
- 会员
新媒体数据分析基础教程
本书共8章,第1章介绍新媒体数据分析的基础知识;第2章介绍各种新媒体数据分析指标;第3章介绍新媒体数据的采集;第4章介绍新媒体数据处理;第5章介绍新媒体数据分析的思维和方法;第6章介绍新媒体数据可视化;第7章介绍不同新媒体平台的数据分析方法和实战技能;第8章介绍新媒体数据分析报告的制作。计算机9.2万字 - 会员
MySQL数据库实用教程
本书瞄准当前高校MySQL数据库教学与实验的需求,在MySQL8.0的基础上编写而成。全书分为两篇。第一篇为MySQL数据库基础,内容包含:数据库基础、MySQL语言、数据定义、数据操纵、数据查询、视图和索引、MySQL编程技术、MySQL安全管理、备份和恢复、事务管理、PHP和MySQL教学管理系统开发。第二篇为MySQL实验,所编排的各个实验与第一篇中的各章(除第10、11章外)内容相对应,计算机12万字 - 会员
数据要素五论:信息、权属、价值、安全、交易
本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。计算机14.5万字 - 会员
商业分析思维与实践:用数据分析解决商业问题
本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。计算机13万字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字 - 会员
云计算服务保障体系
云计算是一种商业计算模型,它将计算任务分布在大量计算机构成的资源池上,使用户能够按需获取计算能力、存储空间和信息服务。与以往的计算模式不同,云计算环境下,信息安全和服务保障问题更严重、更突出。本书从云计算的安全技术和服务质量评价两个方面论述云计算服务保障的体系架构,安全技术方面主要阐述了基于可信计算的实时度量、基于角色的数据隔离访问、云节点信任链的动态维护模型与验证机制和多级安全访问控制模型;服务计算机9.5万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字